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Received 6 April 1988, in final form 12 May 1989 

Abstract. Hyperbolic algebras such as E,, are based on Minkowskian root spaces that 
revert to finite or affine root systems upon the removal of any simple root. In string theory 
terms, finite Lie, affine Kac-Moody and hyperbolic Kac-Moody algebras are generated 
by tachyon vertex operators, tachyon plus photon vertex operators, and vertex operators 
for all mass levels, respectively. The 136 possible hyperbolic Dynkin diagrams between 
the ranks 3 and 10 are classified and exhibited, completing an earlier enumeration by Kac 
of the 18 rank 7-10 cases. The rank-2 hyperbolic algebras, infinite in number, have been 
classified by Lepowsky and Moody. 

1. Introduction and motivation 

The algebra E,,,, often mentioned in the context of string theory, belongs to the class 
of hyperbolic Kac-Moody algebras whose mathematical theory is not at a stage of 
development comparable to that of their finite Lie or affine Kac-Moody counterparts. 
What is currently available in the mathematical literature [ 1-31 on the subject consists 
of general conditions on the Cartan matrix, the certainty that higher ( m2 > 0) string 
vertex operators will become part of the generators (resulting in an exponential growth 
in the number of generators, in contrast to the polynomial growth in the affine case) 
and upper bounds on the degeneracies of root spaces. Our aim in this paper is to take 
a simple (but one hopes, useful) step towards the characterisation of such algebras by 
enumerating their Dynkin diagrams (of rank 3 3 ) .  A hint of the procedure and partial 
results are already given in [I]; its detailed implementation, however, leads to a 
non-trivial amount of work and a surprising proliferation of cases. One can say that 
these are all ‘exceptional’, both in the sense of not belonging to infinite algebra series, 
and also in the intimate ties they have with the diagrams of the ordinary exceptional 
Lie and affine algebras. Hence, although finite in total number, they have to be treated 
and displayed individually. In fact, the reason behind the finite number and the absence 
of hyperbolic algebras of rank >10 is essentially the exceptional nature and finite 
number of their familiar ancestors. That the highest allowed dimension for a hyperbolic 
root space of signature (++. . . +-) is the same as that for the superstring stands out 
as an intriguing fact. 

The interest of physicists and mathematicians in Lorentzian Kac-Moody algebras 
(of which the hyperbolic algebras form a subclass) stems largely from the most 
promising method to realise them, which is through an algebra of vertex operators 
with momenta in a Minkowski space. Versions of vertex operators have proved their 
utility [4] in integrable systems, in boson-fermion conversions, in endowing the 

t Permanent address: Physics Department, BogaziGi University, Bebek, Istanbul. 
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heterotic string with internal symmetry, in dual resonance models and in the construc- 
tion of affine Kac-Moody algebras. It is especially the last two contexts that suggest 
the potential usefulness of Lorentzian Kac-Moody algebras the most strongly. Let us 
examine the mathematical one first. As shown by Goddard and Olive, one passes from 
a finite Lie algebra with Euclidean roots (momenta) to an affine one by adding a single 
new light-like direction to the root space. (The original Frenkel-Kac-Segal construction 
[5] uses moments of the Euclidean vertex operator; this is essentially a ‘unitary gauge’ 
approach.) The natural space in which to embed the resulting singular root space with 
one zero on the diagonal of its metric is a Minkowskian one, with a second light-like 
root independent of the first. We will see in § 2 that this gives a Lorentzian algebra 
of exponential growth. (To have a hyperbolic algebra, this last simple root has to be 
added to the Dynkin diagram in such a way that the removal of any simple root from 
the resulting diagram leads to a known finite or affine Lie algebra.) Apart from being 
of interest as natural extensions of affine algebras, Lorentzian algebras are also known 
to be related to exceptional structures such as the 26-dimensional Leech lattice and 
the ‘Monster’, the largest sporadic finite group. 

As for the physical or string theory motivation, one can argue that string theorists 
have been ‘speaking in the prose of Lorentzian algebras’ all along, because of the 
correspondence between the basic three-string vertex and a commutator of two vertex 
operators, giving a third one. Hence, the ‘structure constants’ of such an algebra should 
determine the form and strength of the three-string vertex, in conformity with Witten’s 
expectation [6] that E,,, must be related to string field theory, presumably in ten 
dimensions. One may then further speculate that the lower rank, especially the r = 4, 
hyperbolic algebras may be related to string interactions in our four-dimensional 
spacetime. 

In this context, an especially curious, but not commonly emphasised, fact is that 
Lorentzian algebras work even without latticising the momenta; all one needs is an 
integral value for the dot product of the two momenta entering the commutator (see 
[2]). But this is automatically ensured if the three momenta are on the mass-shell 
values allowed by the string spectrum! A different application of hyperbolic algebras 
to string theory has also been given recently by Kostelecky and Lechtenfeld [7], who 
use bosonised ghosts in place of Fubini-Veneziano fields on vertex operators. 

The paper is organised as follows. In § 2, we summarise relevant algebraic notions 
and define Lorentzian, hyperbolic and strictly hyperbolic Dynkin diagrams. In § 3.1, 
after discussing the r = 2 case, we describe our method for the classification of hyper- 
bolic Dynkin diagrams. Strictly hyperbolic cases are classified in § 3.2, followed by 
the hyperbolic ones in § 3.3. The latter subsection also contains a detailed proof of 
the impossibility of hyperbolic diagrams beyond rank 10. The results are displayed in 
tables 1 and 2. Section 4 ends the paper with a discussion mostly concerning Lorentzian 
algebras that are not of the hyperbolic type. 

2. Mathematical results and definitions 

In this section, we will describe the relationship between various algebraic concepts 
that will be needed for a classification of hyperbolic algebras. We shall assume the 
reader is familar with simple roots, Cartan matrices and Dynkin diagrams for finite 
simple Lie algebras (FSLA) and condense the presentation accordingly. For the omitted 
details and definitions, we refer the reader to [ I ,  21. 
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A generalised Cartan matrix (GCM) is an indecomposable (i.e. not reducible to 

(Ai) A , E Z  
(Aii) A,, = 2 
(Aiii) A,, s 0 i#j 
(Aiv) A, = OJA,, = 0. 
To a given matrix A, we may associate a Dynkin diagram (DD), denoted by S(A) 

with the properties below. 
(Di) S(A) has r vertices. 
(Dii) When A,AJ, = n 6 4, the vertices i and j are joined by n lines. 
(Diii) If lA,I> /AJ, [ ,  an arrow on the line (ij) points towards the vertexj. 
(Div) If n > 4 ,  i and j are joined by a thick line on which we write ( /A , / ,  IAJ) 

with IA,/ 3 lAJll. This n > 4 case will only concern us when we discuss rank-2 hyperbolic 
algebras. 

block-diagonal form by shuffling rows or columns) r x r matrix A,  such that: 

An algebra of rank r can be defined for a given A,  through 
(ai) [ h , ,  41 = 0 

(aiii) [h , , f ; l=  -A& 
(aii) L h I ,  = 

(aiv) L e ,  9 f ;  1 = 
and the Serre relations? 

(av) ad(e,)-AiJ+'f;  = ad(L)-Aii"e, = 0. 
Thus the relationship between a GCM, a DD and an algebra as in (ai)-(av) is one-to-one. 

The reader has undoubtedly recognised that the structure (ai)-(av) has been 
abstracted from a finite simple Lie algebra, where the h, comprise the Cartan subalgebra 
(CAS), while e, ( A )  is the raising (lowering) operator corresponding to the simple root 
a,. In fact, for a FSLA, we have 

2ai  CYj A . .  = -. 
f f j '  cyj 

Hence for FSLA, the GCM, the DD and the simple root system carry exactly the same 
information (except for an irrelevant overall root length scale and orientation). The 
more general definition of A,  in (Ai)-(Aiv) divorces the root system from the other 
concepts. With an arbitrary A, obeying (Ai)-(Aiv), we may define an algebra through 
(ai)-(av), even when a corresponding root space with a consistent inner product cannot 
be constructed. An example is provided by A * A u = [  1; I:], 

1 

Identifying this with (2ai * a j ) / ( a j  a j )  would lead to the inconsistency that cy3 is both 
shorter than and of equal length to a2 ,  no matter the choice of the inner product! 

In the rest of this paper we will exclude A, of the kind in the above paragraph 
through the criterion of symmetrisability, defined and employed from proposition 5.10 
onwards in Kac [ 11. A symmetrisable GCM A may be written in the form A = DG, with 
D, = di6, and G ,  = Gji.  The entries of D and G are rational numbers in general. It is 
easy to see that the A,  in the above example cannot be expressed in this form. 
t This form of the commutation relations, while equivalent to the usual one in which commutators of any 
two roots are explicitly related to the other roots by structure constants, is not equally useful in practice. 
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It is now possible to think of the symmetric matrix G, as a metric on a root space 
and make the identifications 

This decomposition is of course unique only up to an overall scale factor as usual. 
Given the class of symmetrisable GCM and their associated algebras, we still have 

different possibilities for the signature of the metric G,. We will only consider three 
cases. 

(i)  The metric is positive definite with signature (++ . . . +). This yields the FSLA. 

(ii) The metric is positive semi-definite with one null direction, i.e. the signature 
is (++ . , . , 0). This results in affine Kac-Moody algebras (AKMA).  

(iii) The metric is Minkowskian with signature (++ . . . +, -). This corresponds to 
Lorentzian algebras. 

The Dynkin diagrams, root spaces and representation theory of the cases (i)  and 
(ii) have been exhaustively classified and studied [l]. Here we will concentrate on 
two subclasses of case (iii). These are: 

(a) hyperbolic Dynkin diagrams (HDD), which revert to FSLA or AKMA Dynkin 
diagrams upon the deletion of any vertex; 

(b) strictly hyperbolic Dynkin diagrams (SHDD), which yield only FSLA Dynkin 
diagrams under the same operation. 

It is not obvious that the HDD and the SHDD defined in this fashion correspond to 
a G, of signature (++ . . . +, -); for this result we refer to Kac [ 11, p 47.  Alternatively, 
one may arrive at the same conclusion by checking the signatures of the finite number 
of possible HDD and SHDD ( r  > 2 )  displayed in the next section. 

3. Dynkin diagrams of hyperbolic algebras 

3.1. The method 

The r = 2 case has been treated by Lepowsky and Moody [8]. For completeness, we 
summarise the classification. We are automatically restricted to the strictly hyperbolic 
case as removal of one of the vertices leaves behind A , .  The only type of diagram 

consistent with (Di)-(Div) and the definition of a SHDD is clearly 0-0, with k k ' > 4 ,  
k 2 k ' >  0. Thus there are infinitely many SHDD for r = 2.  The corresponding GCM is 

kk' 

We see that A is symmetrisable. It is also very easy to check that G has signature (+-) 
as expected. 

In the next subsections we shall see in detail that there are no symmetrisable SHDD 

for r > 4 ,  no symmetrisable HDD for r > 10 and that the total number of such algebras 
is finite (albeit over a hundred!), confirming results stated in [l]. At the high-rank 
end of the spectrum, r = 7, 8, 9 and 10 are given in Kac [ l ]  and are 18 in number. 
The 118 cases between 3 and 6 constitute the chief content of the present study. 

The general strategy in searching for hyperbolic Dynkin diagrams of rank r + 1 is 
as follows: (i) draw all possible Lie and/or affine (including semi-simple) diagrams 
of rank r ;  (ii) add an extra root, trying all possible lengths; ( i i i )  try connecting the 
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new root to the old ones in all the ways consistent with a symmetrisable GCM; for 
example, the diagram 

1 .  2 
z 

is not allowed since it inconsistently assigns both of the roots 3 and 4 two different 
lengths (we recall the convention that the arrow points from the long to the short 
root); (iv) test the resulting diagram by removing any point to see whether it reduces 
to (perhaps a disconnected combination of) known finite or affine algebras, the twisted 
ones being included among the latter. A diagram that survives the test is of the 
hyperbolic type. 

If such a case-by-case approach seems unsatisfactory to the reader, he should recall 
that the Dynkin diagrams (or equivalently, the Cartan matrices) of the five exceptional 
Lie algebras are found in a similar way, as the standard treatment in Jacobson [ 9 ]  or 
Cahn [ 101 shows. It is no coincidence, but a reflection of the fact that the new algebras 
are also exceptional, that one has to resort to the same method here. In fact, the 
algebras with rank a 7  are essentially built around the E series, while G2 and F4 play 
a prominent role for lower rank. We now apply the method and present the results 
in order of increasing rank, starting with the strictly hyperbolic cases. 

3.2. Strictly hyperbolic algebras 

It is not difficult to see that these stop at rank 4. Consider the possible diagrams with 
five points. Those with triangles or squares are ruled out, as the deletion of a point 
outside the closed subdiagram would give us a closed diagram which does not corre- 
spond to any finite Lie algebra. The next closed figure, a pentagon, represents AY’ if 
the roots are of the same length. The diagram 

although leading to an ‘acceptable’ looking Cartan matrix if decoded naively, must be 
ruled out as it implies the roots 1, 2, 3 and 4 are long and short at the same time! A 
pentagon of the form 

or its dual, yields an affine rather than a finite algebra when root 4 is removed. This 
leaves tree diagrams of three sorts: (a) a linear one, (b) one in a D,-type configuration, 
(c) one with four dots connected to a central point. Note that a G2 triple line is 
forbidden as it would lead to GY) or other non-Lie subdiagrams. Thus, only single 
and/or double lines may be used in (a), (b) and (c). The all-single-line cases are AS, 
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D5 and D:'). In (c), we may use at most one double line to find 

&-k 
A 
U 

3 

but removal of 1 ,2  or 3 produces the affine algebra B:'). The dual version fails similarly. 
In (b) again only one double line is allowed. Of three such diagrams, the failures of 

and 2h-; 1 

are evident upon dropping 5, while 

is BY). In the linear option (a), one may use two double lines only in the form (modulo 
duals) 

but these are the affine algebras Ai2) and Cy). Other attempts only produce Fill, E?), 
B5 or C 5 .  The arguments establishing the absence of strictly hyperbolic algebras of 
higher rank proceed similarly, with certain simplifying restrictions such as the use of 
at most one double line per diagram and at most three branches per vertex. See also 
the proof of the absence of hyperbolic algebras for r >  10 in § 3.3, where more detail 
is provided. 

The allowed strictly hyperbolic algebras of ranks 3 and 4 are displayed in table 1. 
The reader can easily check that these are the only possibilities by using the general 
method in § 3.1 and the restrictions mentioned subsequently. Let us briefly note a few 
interesting points. 

(a) All of the diagrams of rank 3, except the first one, are based on the exceptional 
group G 2 .  The unique rank-4 diagram can be thought of as an F4 diagram closed 
upon itself, suggesting that the absence of strictly hyperbolic algebras of higher rank 
is related to the absence of suitable higher-rank exceptional algebras. E6,7,8 are too 
large for the strictly hyperbolic case; however, they perform a similar function in the 
hyperbolic one as we shall see later. 

(b) The diagrams 2 ,  4 and 5 for rank 3 indicate three different simple root lengths 
(from now on we will frequently omit the qualifier 'simple', since these will be the 
only roots we shall be concerned with), a situation not encountered in finite Lie 
algebras, although found in the twisted affine series Ai:). 

3.3. Hyperbolic algebras 

The proof that there are no hyperbolic algebras of rank > l O  proceeds along lines 
similar to the proof for strictly hyperbolic ones, except for the fact that we now allow 
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Table 1. Strictly hyperbolic algebras. In the subgroup column, the subgroup in the nth 
position from the left is obtained when the root numbered n is removed. 

Rank Number G G (dual) Subgroups (dual subgroups) 

3 1 lT3 

3 1A3 

4 1 1 La: 
affine (untwisted or twisted) algebra diagrams as possible subdiagrams. To show the 
impossibility of rank 211,  we need to establish a number of intermediate results. As 
we shall see, some of these rules will not apply for lower ranks, leading to a proliferation 
of diagrams for r = 3, 4, 5 and 6. 

( I )  All closed subdiagrams up to ( r  - 2)-gons are forbidden, as the removal of one 
of the two outer points leaves us with a closed diagram (or diagrams) from which at 
least one root ‘dangles’. There are no such finite or affine algebras. 

(11) An ( r  - 1)-gon with a dangling root is also forbidden for r > 10. To see this, 
remove the sixth root from the junction; one is left with at best another hyperbolic 
algebra. 

(111) G 2 ,  AY’ and Ai2’ are obviously ruled out, as a subdiagram of at least four 
points containing them can always be isolated; such a diagram is not finite or affine. 

(IV) We come to r-gons. With only one type of root, we have the affine algebra 
A:!?,. We must next rule out r-gons with double lines to be left with tree diagrams only. 

(V) Double lines may not be introduced into an r-gon ( r 2  11) since it is always 
possible to delete a root so as to leave a double line in the middle rather than at the 
ends of a subdiagram. Again, there are no such finite or affine algebras. 

We are now left with tree diagrams subject to the following restrictions which again 
hold for r 2 11. 
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(VI) At most three branches may be connected to a vertex. Otherwise we could 
isolate a subdiagram of more than five points containing such a vertex. (Obviously 
this may be circumvented for r = 6 since Di” is of rank 5.) 

(VII) There cannot be more than two vertices per diagram. Otherwise we could 
find and remove a point so as to end up with a connected diagram with two vertices 
and a branch of two more points beyond one of them. 

(VIII) A double line may not be directly connected to a vertex as no such configur- 
ation is found among finite or affine diagrams. 

(IX) Double lines may only be used at the ends of diagrams. This is again 
obvious, recalling the structure of Lie and affine diagrams of rank > 5 .  

(X) Four double lines are obviously ruled out, as are three double lines, albeit less 
obviously. A diagram with three double lines which are placed at three branch ends 
by (IX) must have a junction where these three branches meet. None of the double 
lines may be directly attached to the vertex by (VIII). Hence, removal of the point at 
the very end of one of the double lines results in an unacceptable diagram with two 
double lines and one ‘protrusion’ or dangling line left after the removal. 

(XI) The above-mentioned subdiagram, with two double lines at the two ends of 
a branch and protrusions dangling from the same branch is also unacceptable as a 
hyperbolic diagram for r 3 11. To see this, just remove the double line farthest away 
from the protrusion. 

(XII) A linear diagram of equal-length roots with double lines added at both ends 
belongs to one of the finite or affine series B,, C,, Czt’,, AE’ or D!*). Hence a hyperbolic 
diagram subject to all the previous restrictions can admit at most one double line at 
one end. 

(XIII) By (VII), a diagram ending in a double line can have at most two vertices; 
but in fact for r > 0 it cannot have any. To rule out the two-vertex case, remove the 
root farthest from the double line. To rule out the single-vertex case, note that the 
vertex must be situated as far away from the double line as possible and must be either 
of the DI or E6,7,8 (shorter side) type. But the former diagram is just B!!?l, while 
removing the outermost point on the double line in the latter case gives something 
beyond E r ) .  This brings us back to (XII); thus double lines are out altogether! 

(XIV) We are now restricted to single-line tree diagrams with at most three vertices. 
These can be only of two kinds: (i) one with two DI type vertices, (ii) another one 
with one DI and one E6,,,* type (shorter side) vertex. Other possibilities such as 
lengthening the E vertex or using two E vertices can be ruled out by removing the 
point beyond the E vertex or shortening one of the two E vertices. Now, (i)  is already 
Di!?l, while deleting an extreme point from the E vertex leaves the case (ii) with 
something bigger than the EL’) diagram. 

(XV) We are left with a single type of root, forming a Y-shaped diagram. Following 
Kac, we denote this by Tn,,,/ ( n  3 m 3 I), where n, m, I refer to the lengths of the 
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branches including the vertex; thus n + m + 1 = r + 2 3 13. The combination (n ,  2,2)  is 
just D, ; all others of the form (n ,  m 3 3, I 3  2) can easily be checked to give diagrams 
beyond E r )  upon root deletions; hence this last class of candidates also cannot be 
hyperbolic. 0 

A striking aspect of the above proof is again the special role played by the E series. 
It is clear that hyperbolic algebras stop at rank 10 essentially because the finite and 
affine E series stop at E r ) ;  hyperbolic algebras of ranks 7, 8, 9, 10 exist because E6,,,* 
and exist. A glance at the high-rank end of table 2 will make this assertion clearer. 

We can now refer the reader to table 2 where hyperbolic Dynkin diagrams of ranks 
between 3 and 10 are displayed in order of increasing rank. Within a given rank, the 
order roughly corresponds to increasing number of double, triple or quadruple lines 
and/or loops. Algebras with more than one root length sometimes have distinct dual 
partners obtained by interchanging root lengths, which is accomplished by changing 
the directions of the arrows; sometimes the algebra is self-dual,. A very interesting 
point is the appearance of twisted and untwisted affine algebras as subalgebras of the 
same hyperbolic algebra. This is based on the fact that the duals of B:’), Cy’, FYI and 
GF’ are AEL1, D:?l, E?) and Dp’. The twisted affine series A$:) and the twisted algebra 
Ai2’ also make a number of hyperbolic algebras possible. The lesson is that the twisted 
Kac-Moody algebras are as indispensable as the finite or untwisted affine ones (and 
indeed, appear on an equal footing) in the construction of hyperbolic algebras. 

r=3.  The large number of rank-3 diagrams is due to the unique rank-2 diagrams 
representing Ai1’, AY’ and G 2 .  These, in all possible combinations with an additional 
point, generate the rank-3 hyperbolic cases. The organisation of the table is based on 
the mentioned subdiagrams. Note the occurrence of the algebras (11-14, 17 and 18) 
with three different root lengths. 

r = 4. In the light of the arguments linking string theory in r dimensions to a hyperbolic 
algebra of the same rank, this class of diagrams (including especially the single strictly 
hyperbolic one) is of special interest. We note that AI’’ and A$”, which are already 
affine, cannot appear as subdiagrams. Gz, in contrast, still survives through its affinised 
forms GY’ and Di3). The first diagram is the lowest member of what is left of the A 
series in the hyperbolic case; this series extends to r = 9, as we shall see. The determinant 
of the Cartan matrix of a rank-r member of this ‘A series’ is -( r - 1); in this sense 
these may be thought of as the groups ‘ s u ( - n ) ’ ,  8 2 n 2 3 !  Diagram 3 possesses an 
unusually high degree of symmetry, being invariant under the 24 operations of the 
permutation group P4. There are some diagrams of three root lengths after 11; in 12 
we encounter for the first time a diagram of four different root lengths! The Cartan 
matrix for the algebra 16 has determinant -1, a rare property it shares with E,,,. 

r = 5 .  The algebra F4 is what makes the cases 6 ,  8 and 9 possible. Diagrams 9 and 10 
have three different root lengths. 

r = 6. Diagram 2 has appeared previously in [7]. Diagram 3 is strictly peculiar to rank 
6, being based directly on DY). The algebras 4, 5 ,  8, 9, 11 and 12 owe their existences 
to FY’ and its twisted dual E:’). Diagrams 12 and 13 involve three different root lengths. 
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Table 2. Hyberbolic algebras. In the subgroups column, the groups in parentheses in the 
nth position from the left are those obtained when the point number n is removed from 
the dual diagram. 

Rank Number G G (dual) Subgroups (dual subgroups) 

3 1 

2 

3 

4 

=s=+--c 
1 2 3  

A*, A, x A , ,  A','' 

B2,  A, x A , ,  A','' 

Ai1), A, x A , ,  Ai') 

*-sa-...== 
1 2 3  

lA3 
1 A 4--- 3 

5 

6 

1 45% I 

1 2 3  1 2 3  

1 deis c- 3 

A2, A, x A , ,  Ai*) 

B,, A, x A,,  Ai2) 

B,, A, x A,, A;,) 

G,, A, x A,,  Ai') 

AS2), A, x A,,  G, 

Ai2), A, x A , ,  A$*) 

Ai,), A,, Ai2) 

10 

11 

12 

13 

14 

15 

16 

- 
1 2 3  

v 
1 2 3  - 

1 2 3  

1 2 3  

-+==+= 
1 2 3  

1 3 1 3 
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Table 2. (continued) 

Rank Number G G (dual) Subgroups (dual subgroups) 

17 

18 

19 

4 1 

2 

3 

4 

5 

6 

I 

8 

9 

10 

11 

12 

1 A3 - 
1 2 3  

1 3 

'p-& 
3 

1 &A3 
zpb=Jl# 1 

cr3: 1 

L 1 c 3  

1 3 

cm: 1 

l L 3  

AY), A$'), A3, A, 

- 
1 2 3 4  Ai2), A, x B,, A, x B2, Ai2) 
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Table 2. (continued) 

Rank Number G G (dual) Subgroups (dual subgroups) 

Ai2), A, x B,, B, x A,,  Di2I(CY)) 

_F 
0 ” h - L D  
1 2 3 - 4  G$”(D?’), A, x G,, A, x A,,  A3 

19 m 
20 2>6 

1 

crs--- 
1 -  2 3 -  4 

2 b 6  1 

5 1 1 h-7 
D4, AS’), D4, AS’), AI” 2 

5 

3 Qw5 
1 2  

m5 1 2  

4 2  1 3 4 4  L 1 1 3 6  

7 ’  I 
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Table 2 .  (continued) 

3765 

Rank Number G G (dual) Subgroups (dual subgroups) 

6 

7 

8 

9 

10 

6 1 

2 

3 

4 

5 

6 

1 

8 

9 

’b-? 1 

\J 5 4  

JLC 1 2 3 1 .  

1 lg3 4 

- 
1 2 3 4 5 6  

L 
1 2 3 1 . 5  

- 
1 2 3 1 5 6  
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Table 2. (continued) 

Rank Number G G (dual) Subgroups (dual subgroups) 

10 

11 

12 

13 

7 1 

2 

3 

8 1 

2 

3 

4 

9 1 

2 

A 
1 2 3 L 5  

fl 1 2 3  

L 1 2 3 4 5  

1- 3 5 .  

1 1 2 3 4 5  

1 2 3 4 5 6  L 

L 1 3 5 6 7  8 

CJLL 
1 2 3 5 6 8  

A 
1 2 3  5 6 1  8 

f - 3 9  

3 5  

0 : :  
1 2 3 4 5 7 8 9  

& 
1 2 3 L 5  

Bill, A, x B,, B, x A, x B,, C4 x 
A , ,  Ai2), Ai2) 

94 Bil)(A$!)), A, x B6(C6), A, x A, x 
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Table 2. (continued) 

Rank Number G G (dual) Subgroups (dual subgroups) 

3 c - o - L - L  
1 2 3 5 6 7 9  

1 2 3 4 5 6 7 9 1 0  
10 1 

4 9 

*o 

r = 7 .  All the diagrams for r 3 7  have already been given by Kac [l]. Case 2 can be 
thought of as a contribution of the rank-6 diagram 2 or a cross between the E and the 
D series. Similarly, 3 is a cross between the E and B(C) series that started with 4 from 
rank 5 and 6 from rank 6 .  All algebras are based on E6. 

r = 8. Diagram 2 is denoted by T4,3,3 in [ 11. It is the first example of its kind, while 
1, 3 and 4 are higher-rank members of series we have previously seen. All diagrams 
are built upon the E series in its finite and affine forms. This will also hold for the 
remaining r = 9 and 10 cases. 

r = 9. Diagram 2 is T5.4.2; otherwise everthing is as for r = 8. 

r =  10. The ‘A series’ has disappeared as predicted in (11), there being no affine algebra 
beyond E r ’  to support it. The diagram 1 is T7,3,2, alias the famous Elo, deserving the 
latter name both because of its rank and fact that its Cartan matrix A,J has determinant 
-1, in conformity with the general result det(A,[E,]) = 9 - n, where E9 = Ek‘). Thus 
with Elo and the algebras represented by diagrams 2 and 3 the hyperbolic algebras 
come to an end. 

4. Discussion 

Or do they? While in the strict sense they do, Lorentzian extensions with roots still 
in a latticised Minkowski space are possible. These are distinct from the more restricted 
hyperbolic class in at least two important respects: (i) the Dynkin diagram no longer 



3768 C Saglio@u 

has only finite or affine proper subdiagrams; (ii) the number of points on the diagram 
may, in general, be greater than the rank of the algebra. The second possibility, for 
which we will give an example, arises from the fact that a number of simple roots 
greater than the dimensionality of spacetime may be needed to reach all of the lattice 
points. Interesting examples of such diagrams have been discussed by Goddard and 
Olive [2] in the context of even self-dual Minkowskian lattices denoted by IT8"+','. 
Here (8n + 1 , l )  indicates the signature and the allowed dimensions of spaces in which 
such lattices can occur. The unique lattice for n = 1 is known to correspond to the 
root lattice of E,,,. That the Cartan matrix has determinant -1 and the simple roots 
are of equal length are essential to this result. One of the two possible diagrams given 
by Goddard and Olive for n = 2 illustrates both novelties. This is the diagram 

I 
which can be thought of as two EP) diagrams tied together by an additional point in 
the middle. This means 19 simple roots furnish a basis for this 18-dimensional lattice. 
Note that the Cartan matrix determinant for this diagram vanishes, reflecting the linear 
dependence of the 19 simple roots. The situation becomes extreme for I'1253'; the 
Dynkin diagram is infinite [2]! Thus once again a 26-dimensional Minkowski spacetime 
emerges as a limiting case, just as it does for the unitarity and covariance of the bosonic 
string. We find it very intriguing that the numbers 26, 10 and 4 appear as upper bounds 
on the ranks of a special class of Lorentzian algebras, hyperbolic algebras and strictly 
hyperbolic algebras, respectively. Our conclusion is that a deeper understanding of 
such algebras will provide new insights into string theory and vice versa. Recent history 
supports this assertion: vertex operators, invented for dual model calculations, have 
proved to be ideal tools for the realisation of Kac-Moody and Lie algebras, whereas 
the vertex operator representation of Lie algebras with roots in self-dual lattices made 
the heterotic string possible. 

Regarding the actual classification of Lorentzian diagrams, we are not aware of a 
systematic attempt along the direction of the present paper. However, a number of 
papers by Vinberg [ l l]  examining the discrete groups in Lobachevski spaces may be 
relevant. Vinberg's basic approacht is to translate Coxeter's work [12] on the 
classification of discrete reflection groups for spheres S" or Euclidean spaces E" to 
hyperboloidal (Lobachevski) spaces A". As Coxeter's method leads to a classification 
of Lie algebra root configurations, this translation may very well provide a method 
for the description of Lorentzian root structures, although [ 111 does not directly address 
this problem. 
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